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Abstract—Currently, it takes approximately 6 to 8 weeks from
the initial doctor’s examination to diagnose lung disease. This
could potentially lead to the patient’s condition worsening, the
disease becoming unmanageable, or may lead to the patient’s
death. In order to aid doctors in the accurate and more timely
diagnosis of their patients, we propose the use of convolutional
neural networks for computer-aided diagnosis. Our application
uses image recognition to identify the traits of various diseases
in radiographs to successfully diagnose a patient. This is done
through training a CNN with a dataset of 112,120 images of
lung diseases. The model was tested with a resulting validation
accuracy of 93 percent. The application will benefit patients
suffering from these illnesses as it is time-efficient, cost-effective,
and more accurate than manual diagnosis.

Index Terms—convolutional neural network, deep learning,
lung diseases, computer-aided diagnosis, accuracy, disease diag-
nosis, biomedical imaging, thoracic diseases, neural network

I. INTRODUCTION

Lung disease is one of the leading causes of death and
disability in the world [1]. For the early detection of these
diseases, medical imaging, such as radiography, magnetic
resonance imaging, and ultrasound scans were invented as a
sub-discipline of biomedical engineering [2]. As technology
becomes increasingly integrated into medicine, medical imag-
ing has advanced to become a core component of lung disease
diagnosis. With the implementation of this technology into the
various processes of diagnosing diseases, image processing has
been used to provide immense value in detecting diseases that
may be unseen by a physician while also automating the task
of diagnosis. Though incredibly vital to treatment, diagnostic
images require interpretation by an expert to identify the exact
cause of the symptoms. Even then, misdiagnosis is possible as
more than 250,000 patients die per year due to medical error in
the United States alone [3]. Other issues patients deal with in
regards to medicine are the increasing demand for healthcare
and the inevitable shortage of skilled professionals. It is spec-
ulated that there will be a shortage of approximately 40,000 to
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120,000 physicians by the year 2032 in the United States [4].
Implementing a diagnostic system that will swiftly, effectively,
and accurately diagnose patients greatly reduces the amount of
time and money spent on manual diagnosis, consultations and
screening methods. Various technological advancements, such
as robotic surgery [5], nanotherapeutics [6], and computer-
aided detection [7] have already been achieved in the field
of biomedical engineering, but the potential of using deep
learning for medical imaging applications has yet to be fully
explored.

Our goal to facilitate the integration of machine learning
into the medical field can be accomplished by constructing
a convolutional neural network (CNN) to detect thoracic dis-
eases in X-rays radiographs. Computers possess the capability
to store and process large quantities of data to recognize
the underlying patterns. Our program achieved a validation
accuracy of 92.94 percent, which is higher than the state-of-
the-art architectures [8]. When our application is implemented,
patients will be able to get immediate feedback, rather than
potentially waiting weeks for their results using traditional
methods.

Other researchers have created technologies with a similar
purpose, but there are two major drawbacks. Their models
were either trained with limited datasets or yielded poor results
[9]. In comparison, our model utilizes a dataset that contains
more than 100,000 images while maintaining an accuracy rate
exceeding 90 percent.

II. RELATED WORKS

Previous works on image analysis, using deep learning,
reveal that CNNs significantly improve the accuracy of disease
detection in comparison to other models. Abiyev and Ma’aitah
used CNNs, backpropagation neural networks (BpNNs), and
competitive neural networks (CpNNs) to diagnose various
chest diseases with single label classifications [10]. The results
from these researchers are as follows: in the case of the BpNN,
the highest accuracy for the training set was approximately 99
percent, and it was approximately 90 percent for the validation
data. The results were much lower with the CpNN: 85 percent
on the training and validation data. Their claim that CNNs are978-1-7281-3783-4/20/$31.00 ©2020 IEEE



the most efficient neural network model is backed up by their
results; the training data had an accuracy of 100 percent, and
the validation data had an accuracy of 93 percent, which is
the highest accuracy level the researchers reported. However,
they achieved these results using a small sample size of 620
images, and their model lacks the ability to detect more than
one disease in an X-ray radiograph.

Hattikatti also used CNNs to classify lung diseases using
30 lung CT scans and achieved an accuracy of 94 percent,
compared to 87 percent accuracy when using a Support Vector
Machine (SVM), demonstrating that CNNs have better accu-
racy rates when using scans to classify diseases [11]. SVMs
exist as another viable technique for disease classification by
separating the input data with a hyperplane at a distinctive
position in N-dimensional space. Although the accuracy drops
with an SVM, it performs less strenuous computations and
demands lower processing power.

Similarly, Khobragade et al. made use of an artificial
neural network (ANN) in order to process images of chest
radiographs and identify lung diseases that would otherwise
be difficult to find [12]. The proposed method took the form of
four steps: image processing, segmentation, feature extraction,
and image classification. Image preprocessing removed irrel-
evant data on the radiograph, recovering useful information,
strengthening the region of interest, and simplifying its fea-
tures. The segmentation was done through the use of intensity
and discontinuity edge detection to find the boundaries of the
lungs. Intensity converted a grayscale image into a binary
image, and discontinuity detected edges in the image. Image
classification occurs through the use of a feed-forward neural
network.

Chang et al. used deep learning, specifically an ImageNet-
pretrained Resnet50 model to analyze tongue fissures to make
a diagnosis [9]. The issue they faced before the creation of the
model was that different practitioners had different diagnoses
for the same patient. Prior to Chang et al., no one had created
a model to use deep learning visualization methods for tongue
analysis. After they tested the images through the CNN, they
applied Gradient-weighted Class Activation Mapping (Grad-
CAM) to constrain important image regions that contributed
most to the classifications. CNNs require large quantities of
data, so their dataset of 500 images is insufficient to extrap-
olate into real-world application. Although, the researchers
reported a low accuracy rate of 70 percent, their incorporation
of Grad-CAM detected and visualized most of a patient’s
fissures.

Wang et al. also utilized deep learning algorithms when
they compiled an X-ray database to assist in the development
of computer-aided diagnosis [13]. Researchers determined the
eight common thoracic pathology keywords and subsequently
employed Natural Language Processing techniques to label the
data from their archives based on radiological reports attached
to the images. As the patients may develop more than one
disease, Wang et al. utilized a multi-label classification and
localization framework to generate bounding boxes around
the locations of thoracic ailments. Their team adapted the

object localization technique to help train a Deep Convolu-
tional Neural Network (DCNN) that would yield a multi-label
classification of diseases. For their architecture, they operated
ImageNet pre-trained models that resulted in varying accuracy
rates for each disease, from as low as 16 percent for nodules
to as high as 99 percent for cardiomegaly; hence, the detection
rates are unreliable.

When referring to computer-aided diagnosis (CAD), Shi-
raishi et al. mentioned that CAD is being used at an increasing
rate in the field of radiology and is commonly used in the
detection of breast cancer, pulmonary embolism and prostate
cancer. [14]. One downside of the method Shiraishi et al.
details is that CAD is only used as an alternative to radiolog-
ical analyses. The researchers supplemented radiologists with
ANNs, similarly to Khobragade et al., for data classification
[12]. They measured the impact of ANNs by testing the perfor-
mance of ANNs individually, radiologists without ANNs, and
radiologists supported by ANNs. The subsequent evaluation
with the area under the receiver operating characteristics curve
(AUC) revealed that radiologists without the support of ANNs
received the lowest AUC score of 0.81, ANNs alone obtained
an AUC score of 0.85, and the highest AUC score of 0.87
employed the efforts of radiologists supported by ANNs.
Thus, their study displayed the harmonious integration of
machine learning into professional medical diagnosing; the
combinations of both experts and neural networks increased
classification accuracy.

Zhang et al. used image processing, feature extraction, and
machine learning classifiers to analyze CT brain scans [15].
For image processing and feature extraction, they targeted
four specific features: grayscale, shape, texture, and symmetry.
Each category of features went through a Radial Basis Func-
tion Neural Network to assist in classifying whether the scan
is normal or abnormal. The dataset, once again, was limited
to only 212 images and achieved between 83 to 86 percent
accuracy.

Alternative solutions using machine learning, particularly
hidden Markov models (HMM), can also be implemented in
disease detection. HMMs are statistical models containing sets
of finite states. Transition probabilities dictate the relationships
between states and lead to observations. HMMs have been
utilized to detect cough sounds in continuous ambulatory
recordings [16]. S. Matos et al. used 821 minutes of noise
with 2473 coughs signals to train their model. The key met-
rics to evaluate their model performance include sensitivity,
specificity, and positive predictive value; the respective median
percentages are 85.7, 99.9, and 94.7. Other works include
[17]–[67].

III. METHODOLOGY

For our research, we chose to build a model using convo-
lutional neural networks. In this section we will discuss the
model architecture we used to learn classifications of lung
diseases. At a high level Figure 1 shows the abstraction of
our model.



Fig. 1. The process of how images are labeled with their corresponding
disease(s)

A. General Notations

Before we introduce the framework, we will briefly discuss
some general notations used to explain our model.
Let X be the set of pixels x0, x1, ..., xn for an arbitrary
image and T denote the vector containing true classifications
t0, t1, ..., tm corresponding to the same image. The goal is for
the model to estimate a function f : X → Z such that the
predicted classification Z estimates the true classification. In
other words, we want to minimize the follow function:

ε = |Z − T | (1)

We will primarily denote an arbitrary layer number as l,
weights as wl

i,j where i and j are the node numbers from the
current layer to the next respectively.

B. Image Preprocessing

The dataset we chose to investigate, which is shown in
Figure 2, consists of 112,120 images provided by [68]. These
images comprise of 1024 × 1024 pixels with a 3-channel
input. Inherently, this large dataset creates processing and
memory issues without the use of a supercomputer. To com-
pensate, we decided to downscale the images to resolution
sizes of 256 × 256 and 160 × 160.

Fig. 2. National Institute of Health thorax disease dataset

Researchers have determined that rendering images at a
lower resolution and grayscaling images generally does not
affect the accuracy of model during training [69]. As a result,
we chose to downscale our image set to make a more memory
efficient model.

As a disclaimer, X-ray resolutions conventionally exceed a
resolution of 3000 × 3000, which should take more compu-
tational time, but yield better accuracy results.

C. Deep CNN Model

After researching the low accuracy models generated from
AlexNet [70], GoogLeNet, VGGNet-16, and ResNet-50 [13],
we decided to create our own model architecture. We will
briefly detail how the model works.

In general, before our model converges, our initial weights
and biases are randomly generated with a normal distribution
n(µ = 0, σ = 1).

The model starts by converting an arbitrary image into an
array of pixels X . We utilize convolution screens with window
sizes of 5 × 5. These convolution windows capture segments
of pixels and summarizes the data in those windows. Each
window can be calculated as a linear combination

Sft
l,m =

|Window|∑
n=i

(xln · wft
n,m) (2)

where f denotes the feature map number. In this case, we
can treat each convolved window as a node.

For each node in the feature maps, we apply the Rectified
Linear Unit (ReLU) as our activation function for faster
convergence [71].

Y ft
l,m = ReLU(Sft

l,m + bl,m) (3)

Y ft
l,m becomes the new input node for the proceeding layer,

with bl,m denoting the appended bias term we add to prevent
overfitting.

Following each convolution layer, we pool from the layer
of different window sizes. Pooling allows our model to reduce
the dimensionality by summarizing the windows even further
using MaxPooling, which takes the maximum pixel value to
represent the window.

After three pairs convolution and pooling layers, we start a
fully connected deep neural network. Each node in the feature
map of the pooling layer has an associated weight to reach
any node in the first hidden layer. Furthermore, to reduce
overfitting, we add an additional dropout condition, to reduce
the amount of active nodes in each layer.

Because our dataset contains multilabel classifications,
where each disease is independent of each other, we utilized
the Sigmoid function at the end to preform independent binary
classifications [72] [73].

zm = Sigmoid(Sl,m) (4)

In our dataset, we use one-hot encoding to transfer a series
of multilabel classification strings into binary truth vectors T .



Once we had resized the images into smaller dimensions (256
× 256 and 160 × 160), we first decided to use a one-hot
encoder in order to encode the labels for the data into a one
hot array. This allows the categories of the diseases to go under
the process of binarization so that they are able to be used as a
feature to train the model [74]. After obtaining our estimated
classification, we can calculate the loss between our targeted
output and the expected output [75]. Specifically, we utilize
the mean square error.

E =
1

2
(Z − T )2 (5)

Using this error, we perform a backpropagation process to
update and adjust our weights and biases. Altogether, these
variables, V ar can be adjusted in the following way:

V arn+1 = V arn − η × (UpdateRule) (6)

where the corresponding update rule is dependent on the
optimizer and η denotes the learning rate. For our model, we
experimented with both the adam optimizer and the traditional
stochastic gradient descent method.

D. OneHotEnconding and Multilabel Classification

From the available dataset, a corresponding multilabel
classification is assigned to each image, representing the
patient’s different illnesses. Within the class of diseases,
D = [d0, d1, ..., d14] a patient with multiple diseases will have
a truth-vector Tn = [Pneumonia, Fibrosis, Mass,...]. The rep-
resentation we chose to express these multilabel classifications
is to convert it into a binary vector with 1 representing the
presence of a disease and 0 indicating the absence of it. The
example truth-vector Tn can be encoded, using OneHotEn-
conding with a multilabel binarizer, and can be represented as
Tn = [1, 0, 0, 0, ..., 1, 0].

IV. EXPERIMENTS

A. Dataset

The National Institutes of Health provided the dataset used
in this experiment [68]. The dataset consists of 112,120 X-
ray images from 30,805 unique subjects. Each image has
been normalized to a size of 1024 by 1024 pixels. The X-
ray scans possess a corresponding disease label located in a
CSV file. The original authors employed Natural Language
Processing (NLP) to attach these labels by data-mining the
disease classifications from the associated radiological reports.
Due to NLP extraction, the labeling accuracy is estimated to be
above ninety-percent but the data could still contain incorrect
labels.

Figure 2 demonstrates an example of the pairings of disease
labels in the training set with their corresponding thorax X-
ray scan. The 14 diseases labels identified within this dataset
include Atelectasis, Consolidation, Infiltration, Pneumothorax,
Edema, Emphysema, Fibrosis, Effusion, Pneumonia, Pleural
thickening, Cardiomegaly, Nodule, Mass, and Hernia.

B. Major Libraries used for CNN model implementation

For the construction of our CNN model, we coded using
Python 3.7 as it supports an extensive number of machine
learning and data manipulation libraries. The most-used li-
braries of our model are:

1) Keras: A high level deep neural networks library written
in Python.

2) Tensorflow: An open-sourced symbolic math library em-
ployed as a backend for machine learning applications.

3) Pandas: A Python data analysis and manipulation li-
brary.

4) Pillow: A Python imaging library to interact with various
image file formats.

Minor libraries include: numpy, scikit learn, glob, mat-
plotlib, and h5py.

C. Implementation

As mentioned in III-C, we used OneHotEncoding. One
error we came across was that only using OneHotEncoding
changed the dimensionality of the arrays to be a shape different
from our desired input shape. We fixed this problem by using
MultiLabelBinarizer, a transformer which one-hot encodes
data with multiple labels while still retaining the desired input
shape. [76]

We utilized the glob library in order to loop through the
different images in the dataset and append them into an array.
However, loading all of 112,120 images into the array at once
produced a memory error.

There were several adjustments that were made in an
attempt to accommodate the lack of memory and optimize
the accuracy. One solution was to load the images by batch,
appending the images and labels to the arrays one at a
time until 8,000 images are loaded in the array and training
the model with those images. 2,000 images and labels are
then appended to a different array for validation. Afterwards,
both the training and validation arrays are cleared and the
process continues until all 112,120 images are used. The only
resolution with which we were able to use all 112,120 images
in the dataset without loading by batch was 160 × 160.
Besides 160 × 160, we also used 256 × 256, with 50,000
images.

Our final model comprised of three convolutional layers
with 4, 8, and 32 feature maps, respectively; the feature maps’
corresponding filter size went from (5 × 5), (3 × 3), and
(3 × 3). Each convolutional layer was followed by a max-
pooling layer of (2 × 2) receptive fields to downsample the
images. Then dropout layers were laid between each pair of
convolutional and max-pooling to reduce overfitting [77]. We
flattened the model before adding three dense fully connected
layers.

V. RESULTS

Table I shows the results from our model, and Table II
shows the results from our model compared to other models’
validation results.



TABLE I
RESULTS FROM OUR MODEL

Accuracy
Image Resolution Number of Images Accuracy (%) Optimizer

*256x256 50000 94.0 adam
*256x256 50000 93.0 SGD
*160x160 112120 93.5 adam
*160x160 112120 92.1 SGD

**256x256 50000 92.0 adam
**256x256 50000 91.9 SGD
**160x160 112120 92.9 adam
**160x160 112120 92.0 SGD

*Training. **Validation.

For the batch that used images with a resolution of 256
× 256, Figures 3 and 4 show the difference between the
training and validation accuracy. The 256 × 256 batch with
the optimizer changed from adam to SGD is shown in Figures
5 and 6. The accuracy and loss for the set consisting of images
with resolution of 160 × 160 is displayed in Figures 7 and 8.
The optimizer for the 160 × 160 batch was adjusted to SGD,
which is represented in Figures 9 and 10.

As can be seen in Table II, when the results we achieved
are compared to models such as AlexNet, GoogLeNet, and
ResNet-50, we have a significantly higher accuracy. The
results from AlexNet had an accuracy of 63 percent for their
validation data, and they used 1.2 million images with 256
× 256 resolution [70]. GoogLeNet used the same database
with a lower resolution and their accuracy was 64 percent
[78]. ResNet-50 had the same resolution but fewer images
than GoogLeNet and those researchers achieved an accuracy
of 69 percent [79].

TABLE II
COMPARISON OF VALIDATION RESULTS

Accuracy
Image Resolution Number of Images Accuracy (%) Source

256x256 1200000 63.4 AlexNet
224x224 1200000 63.5 GoogLeNet
224x224 50000 69.3 ResNet-50
256x256 50000 92.9 Our Model

One additional factor that influenced our results was the
number of epochs with which we trained the model. Initially,
we only ran the model for 5 epochs for time-efficiency. For
more in-depth results, the optimized model was run for 100
epochs. As shown in Figure 3, the accuracy oscillates due to
the micro-adjustments of the weights in model, but increased
from around 91 to 93 percent overall, which means that it is
essential that it is run for 100 epochs to be able to calculate
the true accuracy.

VI. DISCUSSION AND FUTURE WORKS

The highest accuracy we were able to achieve for our
validation dataset was 92.94 percent. Although this is not
a foolproof method of analysis for hospital usage, it can
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Fig. 3. Accuracy for the 256 × 256 batch with adam as the optimizer

0 20 40 60 80 100
Epoch

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

Lo
ss

Model Loss
Train
Test

Fig. 4. Loss value for the 256 × 256 batch with adam as the optimizer
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Fig. 5. Loss value for the 256 × 256 batch with SGD as the optimizer
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Fig. 6. Loss value for the 256 × 256 batch with SGD as the optimizer
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Fig. 7. Accuracy for the 160 × 160 batch with adam as the optimizer
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Fig. 8. Loss value for the 160 × 160 batch with adam as the optimizer
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Fig. 9. Accuracy for the 160 × 160 batch with SGD as the optimizer
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Fig. 10. Loss for the 160 × 160 batch with SGD as the optimizer

be used to supplement a radiologist’s diagnosis. There was
no significant difference between using adam and the SGD
as the optimizer in the validation results, but the training
results suggest that using adam produces a higher accuracy
percentage. This also applies to how the resolution and number
of images impacted the accuracy; in the training, higher pixel
resolution led to higher training accuracy but had a minuscule
impact on the validation set.

In the field of medicine, it is imperative that diagnoses be
made quickly and accurately; after all, a person’s life hangs in
the balance. By achieving 93 percent accuracy with multi-label
classifications, our model exhibits substantial improvement
compared to previous research, but it can be further developed.

The next step for this project is to create a user-friendly
computer application. This will make it more accessible to
the public, as well as ensure that radiologists are able to
use it in hospitals. The model foundation can be extended
to incorporate more diseases as long as a larger dataset is
compiled. We hope to be able to shorten the amount of time
it takes to diagnose patients so doctors are able to administer
the appropriate treatment as soon as possible.
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