
Highly Parallel Seedless Random Number
Generation from Arbitrary Thread Schedule

Reconstruction

Eryn Aguilar1, Jevis Dancel1, Deysaree Mamaud1, Dorothy Pirosch1, Farin Tavacoli1, Felix Zhan1,

Robbie Pearce2, Margaret Novack2, Hokunani Keehu2

Benjamin Lowe3, Justin Zhan3, Laxmi Gewali1, Paul Oh2
1UNITE/University of Nevada, Las Vegas
2RET/University of Nevada, Las Vegas

3 University of Arkansas

Abstract—Security is a universal concern across a multitude
of sectors involved in the transfer and storage of computerized
data. In the realm of cryptography, random number generators
(RNGs) are integral to the creation of encryption keys that
protect private data, and the production of uniform probability
outcomes is a revenue source for certain enterprises (most notably
the casino industry). Arbitrary thread schedule reconstruction of
compare-and-swap operations is used to generate input traces for
the Blum-Elias algorithm as a method for constructing random
sequences, provided the compare-and-swap operations avoid
cache locality. Threads accessing shared memory at the memory
controller is a true random source which can be polled indirectly
through our algorithm with unlimited parallelism. A theoretical
and experimental analysis of the observation and reconstruction
algorithm are considered. The quality of the random number
generator is experimentally analyzed using two standard test
suites, DieHarder and ENT, on three data sets.

Index Terms—random number generation, multiprocessor,
threading, PRNG, TRNG

I. INTRODUCTION

In the fields of cryptography and computer science, ran-

dom number generation is an important method of securing,

containing and protecting data. Generating random numbers

is a key component in modern cryptography. Pseudo Random

Number Generators (PRNG) for computing random numbers

are inherently deterministic; the sequence can be completely

determined by knowledge of the initialization vector or seed.

For cryptographic purposes, the initialization vector is con-

structed by sampling a true random number generator and it

is resampled frequently.

Several methods have been proposed for true random num-

ber generators, often sampling highly dynamic and chaotic

natural processes. Some methods include obtaining random

data through the chaos of lava lamps [1], using atmospheric

noise in order to capture random data [2], and the device drive

on Linux, /dev/random [3]; however, these methods are slow.

Methods have been proposed to capture randomness occurring

inside the computer such as measuring fluctuation in CPU jitter

[4], and memory access times at the memory controller [5].

A solution was proposed by Antonaidis et al., to indirectly

poll the memory accesses at the memory controller through

software. [6] Antoniadis et al., show this solution is two to

four orders of magnitude faster than other direct methods

[6]. In their approach, called Co-RNG, Antoniadis et al.,

reconstruct the read and write history of two threads accessing

two shared variables. They call this the schedule reconstruction

problem [6]. The reconstruction of read-write history in [6]

only supports two threads, making it a two thread schedule

reconstruction problem. With only two interleaving threads,

the chance of repeated read-write histories where the two

threads execute in lock step is increased. The length of history

is determined by the number of reads and writes these threads

complete. Therefore, a longer history requires more read and

write operations.

This research proposes CAS-RNG, a random number gen-

erator which makes use of the compare-and-swap instruction.

The new approach simplifies the previous approach, general-

izes to allow an aribitrary number of threads to execute in

parallel, and maintains a high throughput and good quality

randomness. In this research, the two-thread reconstruction

is modified to a N thread schedule reconstruction problem,

reconstructing the reads and writes of N concurrent threads.

The reconstructed history is used to generate random numbers

by using the history as an input to the Blum-Elias algorithm,

similarly to Antoniadis, et al. [6]. The possibility of repeated

histories is reduced by having N parallel threads with more

opportunities for interleaving. This method constructs a longer

history in the same number of rounds. The validity of the

random number generator created will be tested using two

test suites: ENT and Dieharder.

The rest of this paper is structured as follows: Section II

discusses the related work and prerequisite material, Section

III discusses our generalized algorithm for n schedule recon-

struction, Section IV contains our experimental analysis of the

randomness of our approach, and Section V summarizes the

experiment and results with suggestions for future research.

1

2019 IEEE International Conference on Big Knowledge (ICBK)

978-1-7281-4607-2/19/$31.00 ©2019 IEEE
DOI 10.1109/ICBK.2019.00009

II. RELATED WORK AND PRELIMINARIES

A. Related Work

True random number generators generate random numbers

from physical processes. This process is in direct contrast to

pseudo-random number generators, which rely on algorithms

and seeds. In some cases, the random source can exist within

the computing hardware. In a study by Müller [4], frequencies

in the processor and RAM are used to create random bits. The

Müller experiment [4] uses memory access time as explained

by Agafin [5] to create a more efficient random source. For this

research, multi-core processors help to retrieve the true random

source. By utilizing multiple cores, an increased number of

threads are used to collect the random sequence. This use of

parallelism increases speed and reduces the time to create the

sequence from shared memory.

It has been shown by Agafin and Krasnopevtsev that

memory accesses at the memory controller are a source

of true randomness [5]. The reads and writes to memory

form a truly random sequence, which can be modeled as a

stochastic process X . However, the probability of the next

element in the sequence given the proceeding sequence is

unknown. To illustrate, Pr(Xi = ji|Xi−1 = ji−1, Xi−2 =
ji−2, . . . , Xi−k = ji−k) is unknown. Fortunately, due to

the work of Antonaidis, et al. in Co-RNG, the stochastic

process X modeling the memory accesses at the memory

controller has the first order Markov property [6]. Therefore,

we capture the relevant information in X by a new stochastic

process Y with the first order Markov assumption, that is

Pr(Xi = ji|Xi−1 = ji−1, Xi−2 = ji−2, . . . , Xi−k = ji−k) =
Pr(Yi = wi|Yi−1 = wi−1). The probability remains unknown,

however, there exist algorithms to extract unbiased randomness

from the Markov chain Y .

One such algorithm is the Blum-Elias algorithm. Consider

a sequence S = s1, s2, s3, . . . , sn of memory accesses, which

correspond to a path in the Markov chain Y . Elias proposed

to partition the possible output sequences S into classes, for

which each class has equal probability [7]. The output of the

Elias function l = fE(S) is a label l ∈ L which occurs with

equal probability, ∀l ∈ L,Pr(fE(S) = l) = 1
|L| .

Time efficiency and data accuracy become issues with

multithreading in concurrent programming. Problems arise due

to the readers and writers accessing the same shared memory at

the same time [8]. In a study on concurrent programming [9],

mutual exclusion is implemented to ensure the shared memory

is not corrupted by being accessed multiple times. The shared

memory, or shared resources, are known as critical sections;

mutual exclusion ensures that only one process occurs at

a time within the critical sections. Locking is essential to

critical resource access. When a critical section is being used

to complete a task, the critical section is locked so other

processes cannot access it at the same time. When the task is

completed, the critical section is unlocked, allowing another

process to access the critical section. The flaw in mutual

exclusion is that concurrency is limited, and processes become

sequential. Processes must wait to use the critical sections

until they are unlocked. Wait times can vary and may lead

to processes never accessing the critical section at all. In

some cases, processes may run for a long time or not run at

all, leading to a deadlock. However, Peterson [10] indicates

alternate solutions to the read-write problems that do not

involve the concept of mutual exclusion are possible.

Wait free synchronization is a strong non-blocking mecha-

nism providing guaranteed progress to all correct processes

[11]. This synchronization allows the readers and writers

to access the shared memory without mutual exclusion. For

concurrent data structures, a wait-free approach guarantees

any process can complete any operation in a finite number

of steps. A wait-free implementation of an object can be

built out of any object with the same or greater consensus

number [12]. A universal constructor using an object of

infinite consensus number, compare-and-swap, as a universal

primitive, can be used to implement any wait-free object [12].

We verify correctness by showing that the implementation is

linearizable.

An atomic snapshot can be constructed from atomic read

and write registers using the clean double collect method [12].

This method takes two sets of atomic reads of the shared

memory and compares them to construct the snapshot. The

atomic snapshot reads the observations in multiple iterations

and analyzes the pairs of read-write operations. The pairs are

checked to see if they are identical; if so, the snapshot is

complete. If the reads do not match in the first cycle, the

process repeats until the collections match, which can lead

to long delays and starvation. A helping mechanism can be

implemented to create a wait free atomic snapshot using clean

double collects [12]. While in theory, clean double collect

allows all the observations to be read, in practice it is not

optimal and can allow for many indistinguishable observations

which complicates the reconstruction.

Verifying the quality of a random source is a difficult task

because only the output sequences are tested, rather than

the source itself. Therefore, the most common approach is

to test very large output sequences consisting of millions of

random bits. If random number generator is of poor quality,

then the resulting sequences should have detectable patterns.

The probability of a pattern emerging in a sequence increases

proportionally to the length of the sequence. To this end, three

test suites have been developed: the NIST Statistical Test Suite,

the Dieharder suite, and the ENT suite. Each test suite is

designed to look for patterns in input sequences by way of

a variety of tests.

According to John Soto, an official at NIST, they have 3

viewpoints when evaluating sequences: threshold values, fixed

ranges, and probability values [13]. For example, in monobits,

a line of zeros and ones, they employ a frequency test, by

counting and comparing the amount of ones and zeros to

determine whether they have an equal amount [14].

Dieharder is a test constantly in development by Robert

G. Brown. Similarly to NIST, it employs multiple tests in

order to evaluate randomness. Dieharder tests use most of

the processes that NIST uses [15]. The main difference being

2

the development of new tests by Robert G. Brown himself. It

can simply be described as an upgrade from its predecessor,

Diehard.

ENT is a program that tests sequences in bits in order

to test randomness. ENT tests Entropy, uses the Chi-Square

Test, finds the Arithmetic Mean, finds the Monte Carlo Value

for Pi and the Serial Correlation Coefficient [16]. Both ENT

and Dieharder are respected tests for measuring validity of

a random number generator. Other research from the Data

Science Lab includes [17]–[59].

B. Preliminaries

The Co-RNG approach due to Antoniadis et al. [6] splits

the algorithm into two methods: Co-OBS and Co-REC. This

method can be improved further. One improvement is to

increase the number of threads. Instead of two observation

threads in the Co-RNG [6], there can be a N number of

threads. Having additional threads increases the speed of the

random generator thereby reducing execution time. To keep

track of the N observation threads, an atomic snapshot [61]

must be used. Using an atomic snapshot records multiple

shared memory locations in a single hardware step to prevent

inaccurate recordings in an asynchronous system [12]. These

enhancements to the Co-RNG algorithm will increase the

speed and reduce the time to create the random sequence

and improve the quality of random number generation. By

implementing with multithreaded programming, the chances

of concurrent memory interleavings are increased during the

observation algorithm.

The Co-RNG [6] algorithm is used as a basis for the random

number generator. The algorithm relies on measuring memory

accesses at the memory controller as the random source

to generate sets of random numbers. The random number

generator constructed from the modified Co-RNG algorithm

will measure concurrent memory accesses with an arbitrary

number of threads. The previous Co-RNG algorithm consists

of two algorithms, Co-OBS and Co-REC, which allow only

two observation threads [6]. Having only two threads limits the

utilization of modern multicore machines with many cores.

Linearizability is the property of a multi-threaded algorithm

which allows for the construction of a unique serialized history

for an asynchronous execution which respects the real time

order [12]. The existing Co-RNG approach is not lineariz-

able, despite both the observation threads performing atomic

operations. Co-OBS is used to observe the sequence using

two threads and records the shared memory asynchronously

[6]. Co-REC [6], on the other hand, is used to reconstruct the

sequence written by the two observation threads which are then

sent to the Blum-Elias algorithm [7]. The Co-REC algorithm

suffers from being complicated since the atomic reads of

shared memory allow for indistinguishable observations. The

use of compare-and-swap in our proposed algorithm sim-

plifies the reconstruction algorithm because all observations

are distinguishable, and the total order of operations can be

maintained.

Fig. 1. The flow diagram of our approach.

To test the effectiveness of our Random Number Generator,

two programs, ENT and Dieharder, are used. Each of these

test suites include similar algorithms to test the authenticity of

the generator. According to the National Institute of Standards

and Technology, “Because there are so many tests for judging

whether a sequence is random or not, no specific finite set of

tests is deemed ‘complete’” [62]. There is no single program

set as the standard to test the probability of a random generator.

Multiple tests will be used to verify the robustness of our

algorithm’s generated sequences.

III. CAS-RNG

To generate random numbers, memory accesses are mea-

sured indirectly at the memory controller. We measure the

memory access times indirectly in software. These memory

accesses can be converted into a sequence of unbiased random

bits using our new algorithm. A previous solution using this

technique was proposed with limited parallelism [6]. We take

a new approach to measuring memory accesses using the

compare-and-swap operation. We propose a new, generalized

reconstruction algorithm to support n threads instead of two.

In order to keep track of all the observations from each thread,

an atomic snapshot of the shared memory will be taken. We

break down our approach into three stages: observation, recon-

struction, and extraction. The flow diagram of the algorithm

is given in Figure 1.

A. Observation

There are two ways an atomic snapshot can be used in the

Co-Obs algorithm: clean double collect [12] or the compare-

and-swap method. The first method, clean double collect

[12], is not time efficient. The algorithm is slower than the

compare-and-swap method because at least 2n atomic reads

are necessary for a single snapshot. The benefit of this method

is it only uses atomic reads and writes. However, if other

threads take steps during a thread’s collection, then the thread

must retry. These delays will cause the resulting reconstruction

to be difficult as well as increase the time to execute the

observation stage.

3

In order to avoid the drawbacks of the atomic snapshot using

a clean double collect, we use a compare-and-swap operation.

This method avoids the delays caused by the clean double

collect, and also guarantees a total order on the operations.

We use linearizability as the correctness condition for our

algorithm. The CAS-OBS algorithm is given in Algorithm 1.

Algorithm 1 CAS-OBS

Input: SM , the array of shared memory, R, the number of
rounds, ID, the thread ID

Output: Obs, the array of observations recorded
1: for i← 0 to R do
2: success← false
3: while !success do
4: old← SM .get()

5: x← old
6: x[ID].set(i)
7: cacheFlush()

8: success← SM .compareAndSet(old, x)

9: cacheFlush()

10: Obs[i]← x
11: return Obs

The CAS-OBS algorithm is run concurrently by n threads.

Each thread completes R compare-and-swap operations. The

atomic nature of the compare-and-swap operation onto the

shared memory SM guarantees a total order. We can com-

pletely distinguish the sequence of operations by all threads.

The shared memory location SM contains a reference to

an array of length n and each thread is given a unique

ID ∈ 1, 2, . . . , n. Each thread only writes to the array location

indexed by its unique ID. To complete a round, a thread must

capture a local copy, old, of the shared memory in line 4, then

make its change to old by writing its current round number

to the IDth location of the new array x in line 6. Finally,

the thread must successfully complete a compare-and-swap

operation on the shared memory location, SM , to publish

the change to the other threads atomically in line 8. If the

compare-and-swap fails, the thread must retry. However, we

maintain progress in the observation stage by noting a thread

can only fail the compare-and-swap operation if another thread

succeeds. Once the thread succeeds, it can save the published

array, x, as its observation for that round in line 10.

Each thread must make a new local copy of the array since;

if not, multiple threads could change the same reference and

the SM reference would not change. This condition would

have the undesirable effect of threads being able to overwrite

other thread’s changes, since the compare-and-swap operation

would succeed. Once a thread publishes the reference to the

array in SM , the array is never written to, only read from.

Furthermore, if a thread succeeds in publishing its change, then

the array, x, that the thread publishes becomes a valid snapshot

of the memory, linearized at the moment the compare-and-

swap operation succeeds. Therefore, it is possible to recon-

struct the total order of compare and swap operations onto the

shared memory location, SM . Note, that if the old collection

acquired in line 5 is used as that round’s observation then it

allows for indistinguishable outcomes where multiple threads

observe the same state configuration.

A cache flush is required to implement the CAS-OBS

algorithm for the random number generator to work properly.

If the CAS-OBS algorithm runs without a cache flush, there

is a high chance of data being retrieved from the cache

instead of the RAM. Reads pulling memory from the cache

is a case that should be avoided; cache is not an appropriate

source of randomness [5]. Relying on the cache as a source

of randomness can lead to a faulty input trace, where the

sequence of reads and writes is not reliable as a random source.

In lines 7 and 9 of the CAS-OBS algorithm, a cache flush is

carried out after each read and write.

Following the observations, an N × R matrix, where each

row is a thread’s Obs array from Algorithm 1, completely

describes the total order of NR observations. To construct the

sequence, the CAS-REC algorithm is used which takes the

N ×R matrix as input.

B. Reconstruction

We avoid the problem of indistinguishable observations

which complicate the reconstruction algorithm. The recon-

struction algorithm proposed in Algorithm 2 is designed

to accept the observations from Algorithm 1. Allowing for

indistinguishable observations only serves to complicate the

algorithm, and the use of compare-and-swap can maintain that

at every step in the reconstruction algorithm, there exists only

one thread whose write occurred. That is, it is always possible

to tell which thread’s write preceded the other threads’. This

maintains a total order on the history and allows for a straight

forward reconstruction.

Once the observations are collected, they are stored in N
arrays of length R, where N is the number of observation

threads and R is the number of rounds. Each thread has an

observation for each round which consists of a snapshot of

the shared memory. Then, the schedule of memory accesses,

or trace, is reconstructed using Algorithm 2. The output of

this algorithm is the reconstructed trace, t, which is an array

of length N ∗R. Each entry in the array is the ID of the thread

whose successful compare-and-swap operation was linearized

at that moment in time relative to all other threads. In the worst

case, the algorithm runs in O(R∗N3) time, where the for loop

in lines 3 to 9 run for every thread in each observation, causing

N2 operations and this process is repeated N ∗R times in the

loop in line 2.

4

Fig. 2. N -State Markov Chain

Algorithm 2 CAS-REC

Input: Obs, the observations, R, the number of rounds, N ,
the number of observers

Output: t, the reconstructed trace
count← N
while count > 1 do

3: for i← 0 to N do
if n[i] < R then
all← true

6: for j = 0 to N do
if j �= i then

if Obs[i][n[i]].get(j)≥ n[j] then
9: all← false

if all = true then
t[idx] = i

12: idx++
n[i] + +
break

15: count← 0
for i← 0 to N do

if n[i] < R then
18: count++

for i← 0 to N do
while n[i] < R do

21: t[idx]← i
idx++
n[i] + +

24:

return t

We model the shared memory accesses as a first order

Markov chain [63] with n states, where n is the number of

observation threads. It was shown in the work of Antoniadis,

et al., that it is appropriate to model memory accesses as a

first order Markov chain [6]. Each state represents a successful

compare-and-swap operation to the memory. This process is

simpler than previous approaches where the number of states

scale exponentially due to only using atomic reads and writes.

We attribute this improvement to the use of compare-and-

swap. This refinement creates a simple and scalable Markov

chain with NN∗R possible sequences of length N ∗R. Figure

2 shows the arbitrary state Markov chain and each edge of

nonzero transition probability. The CAS-OBS procedure can

be viewed as a random walk on the Markov chain in Figure 2

and a state k represents a successful compare-and-set operation

in line 8 of Algorithm 1 by thread k in some round i. This

is recorded as the ith observation in line 10 of Algorithm 1.

We use the path reconstructed by Algorithm 2 as input to the

Blum-Elias algorithm as proposed by Zhou and Bruck [7] and

implemented by Andoniadis, et al. [6].

IV. EXPERIMENT

To test the results of the experiment, two test suites: ENT

and Dieharder, will be utilized. As stated in the Related Work,

there is no single method for effectively testing randomness.

Furthermore, there is no known way to prove that a ran-

dom number generator is random or cryptographically secure.

Rather, the best measurements of randomness are determined

by a variety of tests on large samples generated. Each data

set in the experiment contains several million random bits

generated by CAS-RNG. Flaws in one test may be covered in

another one. By testing in two different programs, the validity

of results is assured.

NIST Statistical Test Suite (STS) has three principles con-

cerning the testing of random number generators. These prin-

ciples are probability values, threshold values, fixed ranges.

The variable labeled as s stands for the binary sequence,

which is present in every principle and most prominent in

probability values. Probability values depend on the p-value

statistic, described by NIST as “...the probability of obtaining

a test statistic as large or larger than the one observed if the

sequence is random” [13]. The closer the p-value is to 1, the

more random the sequence. The p-value compares randomness

of a true random number generator to the randomness of s.

[64]. The next two principles are best understood in terms of

monobits. Fixed ranges simply mean the ratio in which the

data exists in a string of monobits. A truly random sequence

will have a ratio of 1:1, with ones and zeroes occurring

in equal amounts. The distribution of monobits cannot be

skewed; otherwise, the data will be considered biased, and

consequently, not random. Threshold values deal in terms of

pattern recognition. If there are identifiable patterns, the data

will not be considered random. These three principles confirm

a single test for randomness would be incomplete.

The Dieharder test suite contains many of the same tests

from the NIST STS. The key differences are the tests that

Robert G. Brown develops himself as well as the large battery

of tests compared to other test suites [15]. The RGB Bit

Distribution test is unique to Dieharder. This test chunks the

sequence and determines the Chi-square and p-value for the

chunks, which are not overlapping. We test the CAS-RNG

using the Dieharder and the ENT test suites on different data

set sizes. The random number generator passes many of the

Dieharder tests, depending on the sample. The output of the

full analysis from a single trial is given in the Appendix. A

plot of the p-values for each test is given in Figure 3.

5

TABLE I
RESULTS FROM ENT TESTING

Description Test 1 Results Test 2 Results Test 3 Results
Sample Size(MB) 2.3 4.3 34.2

Entropy(bites/Byte) 7.99670 7.999267 7.999373
Chi Square Distribution 1098.95 4678.60 32220.20

Arithmetic mean value of data bytes 127.8565 128.1637 128.1489
Monte Carlo value of Pi 3.124803022(0.53%) 3.118101880(0.75%) 3.116531248(0.80%)

Serial correlation coefficient 0.000948 0.001586 0.001468

TABLE II
TIMING DATA

Bits Real Time (s) Throughput (bit/s)
18104080 60.502 299,231.10
17967832 64.358 279,185.68
17562904 71.966 244,044.47
17287136 64.121 269,601.78
16000312 67.106 238,433.40
18541432 71.029 261,040.31
18060368 71.085 254,067.22
17443920 69.214 252,028.78
16426072 67.714 242,580.15
18398040 64.538 285,072.98

Average Throughput: 262,528.59 bit/s

Fig. 3. The p-values from the Dieharder test.

ENT is different from the Dieharder test suite in that it only

employs 5 tests in order to validate randomness: Entropy, Chi-

Square, Arithmetic Mean, Monte Carlo Value for Pi and Serial

Correlation Coefficient. The Chi-Square Test is frequently

used as a way to test random data. The results given from

three trials of the ENT test suite on different random data sets

are given in Table I. The bit entropy is at least 7.99 in every

trial.

Lastly, we give the throughput calculated from our imple-

mentation of the random number generator. We implemented

the CAS-OBS and CAS-REC in Java and created a C library

to implement the cache flush, since Java lacks instructions

to flush the cache directly. Unfortunately, this removes the

portability of our implementation which Java normally pro-

vides. Instead, an architecture dependent cache flush should

be provided for porting to different platforms. After the trace

is generated, we use the existing implementation of the Blum-

Elias algorithm given by Antoniadis [6]. We implemented

a modified driver program for the Blum-Elias algorithm to

interface with our Java implementation. Finally, we create a

driver program in C to provide a command line interface to

easily generate test data.

We ran our tests on a Virtual Machine running 64-bit Ubuntu

18.04 LTS on a Windows 10.0.17134 host operating system

using VirtualBox 6.0.4r128413 (Qt5.6.2). The virtual machine

was allocated 2 hardware cores (4 logical), 8,196 MB of RAM,

and 128MB of video memory with VT-x/AMD-V, nested

paging, and KVM paravirtualization. The hardware on the host

machine has a Intel Xeon E5-1630 v4 CPU clocked at 3.70

GHz, 64 GB of RAM, and an Nvidia GeForce 1080 graphics

card. We achieve an average throughput of 262,528.59 bits

per second with our implementation shown in Table II. The

throughput could easily be improved by running the algorithm

on faster hardware, allocating more physical cores to the

implementation, writing the implementation in C, and using

process-based parallelism like OpenMP to scale the algorithms

to run on multiple nodes. A comparison with other approaches

is given in Table III. It is difficult to draw a fair comparison

between methods as there are differences in hardware and

implementation and each method has pros and cons besides

its throughput.

TABLE III
COMPARISON WITH EXISTING METHODS

Test Throughput (Mbits/sec)
CPU Jitter [4] 0.008

FPGA-based TRNG [65] 6.050
EEPROM RNG [66] 166

STRNG [67] 200
CAS-RNG (This Work) 262.529

V. CONCLUSION

In this paper we propose a new random number generator

which measures memory accesses at the memory controller

indirectly through software. We generalize on a previous

approach and support an arbitrary number of threads. The

advantages of this method are unlimited parallelism which

translates to faster trace generation and increased chances

for memory interleavings. We also solve the problem of

indistinguishable observations faced in a previous approach

by using compare and swap operations which simplifies the

schedule reconstruction. We test our random number generator

with two test suites, Dieharder and ENT, on three data sets and

achieve satisfactory results. We achieve an average throughput

of 262,528 bits per second. The throughput could easily be

6

improved by running the algorithm on faster hardware, writing

the implementation in C, and using process-based parallelism

like OpenMP to scale the algorithm to run on multiple nodes.

Benefits of this approach over Co-RNG are a simplified,

linearizable protocol that can easily be scaled to take advantage

of multicore architectures, which increases the robustness of

the created traces.

Some ideas for future work include implementing the

proposed algorithms as a kernel module, testing the random

number generator in cryptographic protocols, and designing a

linear time algorithm for N thread schedule reconstruction.

ACKNOWLEDGMENT

This research was supported in part by the Department

of Defense under the Army Educational Outreach Program

(AEOP) and the National Science Foundation under the Re-

search Experiences for Teachers (RET) program.

APPENDIX

Table IV contains the results of a trial using the Dieharder

test suite.

REFERENCES

[1] L. C. Noll, R. G. Mende, and S. Sisodiya, “Method for seeding a pseudo-
random number generator with a cryptographic hash of a digitization of
a chaotic system,” mar ” 24” 1998, uS Patent 5,732,138.

[2] M. Haahr, “Random. org: True random number service,” School of Com-
puter Science and Statistics, Trinity College, Dublin, Ireland. Website
(http://www. random. org). Accessed, vol. 10, 2010.

[3] Z. Gutterman, B. Pinkas, and T. Reinman, “Analysis of the linux random
number generator,” in 2006 IEEE Symposium on Security and Privacy
(S&P’06). IEEE, 2006, pp. 15–pp.

[4] S. Múller, “Cpu time jitter based non-physical true random number
generator,” in Ottawa Linux Symposium, 2014.

[5] S. Agafin and A. Krasnopevtsev, “Memory access time as entropy source
for rng,” in Proceedings of the 7th International Conference on Security
of Information and Networks. ACM, 2014, p. 176.

[6] P. F. Blanchard, R. Guerraoui, J. M. Stainer, and K. Antoniadis,
“Concurrency as a random number generator-technical report,” École
Polytechnique Fédérale de Lausanne, Tech. Rep., 2016.

[7] H. Zhou and J. Bruck, “Generalizing the blum-elias method for gen-
erating random bits from markov chains,” in 2010 IEEE International
Symposium on Information Theory. IEEE, 2010, pp. 1248–1252.

[8] L. Lamport, “Concurrent reading and writing,” Communications of the
ACM, vol. 20, no. 11, pp. 806–811, 1977.

[9] P. B. Hansen, “Concurrent programming concepts,” ACM Computing
Surveys (CSUR), vol. 5, no. 4, pp. 223–245, 1973.

[10] G. L. Peterson, “Concurrent reading while writing,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 5, no. 1, pp.
46–55, 1983.

[11] M. Herlihy, “Wait-free synchronization,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 13, no. 1, pp. 124–
149, 1991.

[12] M. Herlihy and N. Shavit, The art of multiprocessor programming.
Morgan Kaufmann, 2011.

[13] J. Soto, “Statistical testing of random number generators,” in Proceed-
ings of the 22nd National Information Systems Security Conference,
vol. 10, no. 99. NIST Gaithersburg, MD, 1999, p. 12.

[14] L. Obrátil, “The automated testing of randomness with multiple sta-
tistical batteries,” Ph.D. dissertation, Masarykova univerzita, Fakulta
informatiky, 2017.

[15] R. G. Brown, D. Eddelbuettel, and D. Bauer, “Dieharder: A random
number test suite,” Open Source software library, under development,
URL http://www.phy.duke.edu0/r̃gb/General/dieharder.php, 2013.

[16] J. Walker, “Ent: a pseudorandom number sequence test program,”
Software and documentation available at/www. fourmilab. ch/random/S,
2008.

TABLE IV
RESULTS FROM DIE HARDER TESTING

Test Name nt t sam. p sam. p-value Assessment
dh birthdays 0 100 100 0.60211193 PASSED

dh operm5 0 1000000 100 0.11761350 PASSED

dh rank 32x32 0 40000 100 0.61627575 PASSED

dh rank 6x8 0 100000 100 0.01053413 PASSED

dh bitstream 0 2097152 100 0.11493929 PASSED

dh opso 0 2097152 100 0.17779064 PASSED

dh oqso 0 2097152 100 0.58282417 PASSED

dh dna 0 2097152 100 0.07571953 PASSED

dh count 1s str 0 256000 100 0.10675637 PASSED

dh count 1s byt 0 256000 100 0.69887467 PASSED

dh parking lot 0 12000 100 0.35741380 PASSED

dh 2dsphere 2 8000 100 0.69467665 PASSED

dh 3dsphere 3 4000 100 0.59753284 PASSED

dh squeeze 0 100000 100 0.59698262 PASSED

dh sums 0 100 100 0.84714513 PASSED

dh runs 0 100000 100 0.83717795 PASSED

dh runs 0 100000 100 0.93718614 PASSED

dh craps 0 200000 100 0.71422711 PASSED

dh craps 0 200000 100 0.59813653 PASSED

tsang gcd 0 10000000 100 0.86871313 PASSED

tsang gcd 0 10000000 100 0.76056949 PASSED

sts monobit 1 100000 100 0.72613955 PASSED

sts runs 2 100000 100 0.08819269 PASSED

sts serial 1 100000 100 0.11455184 PASSED

sts serial 2 100000 100 0.75445713 PASSED

sts serial 3 100000 100 0.39886555 PASSED

sts serial 3 100000 100 0.36319430 PASSED

sts serial 4 100000 100 0.75433968 PASSED

sts serial 4 100000 100 0.56159855 PASSED

sts serial 5 100000 100 0.54198244 PASSED

sts serial 5 100000 100 0.96334311 PASSED

sts serial 6 100000 100 0.07487319 PASSED

sts serial 6 100000 100 0.51223479 PASSED

sts serial 7 100000 100 0.13144794 PASSED

sts serial 7 100000 100 0.66598230 PASSED

sts serial 8 100000 100 0.34618789 PASSED

sts serial 8 100000 100 0.19970824 PASSED

sts serial 9 100000 100 0.68683720 PASSED

sts serial 9 100000 100 0.16390930 PASSED

sts serial 10 100000 100 0.90677933 PASSED

sts serial 10 100000 100 0.86450898 PASSED

sts serial 11 100000 100 0.96559554 PASSED

sts serial 11 100000 100 0.49351225 PASSED

sts serial 12 100000 100 0.38054616 PASSED

sts serial 12 100000 100 0.32306979 PASSED

sts serial 13 100000 100 0.61301409 PASSED

sts serial 13 100000 100 0.35404988 PASSED

sts serial 14 100000 100 0.97201966 PASSED

sts serial 14 100000 100 0.96328185 PASSED

sts serial 15 100000 100 0.86571502 PASSED

sts serial 15 100000 100 0.98836476 PASSED

sts serial 16 100000 100 0.90823582 PASSED

sts serial 16 100000 100 0.76676980 PASSED

rgb bitdist 1 100000 100 0.16720244 PASSED

rgb bitdist 2 100000 100 0.07757307 PASSED

rgb bitdist 3 100000 100 0.46617512 PASSED

rgb bitdist 4 100000 100 0.25515346 PASSED

rgb bitdist 5 100000 100 0.86238900 PASSED

rgb bitdist 6 100000 100 0.58571105 PASSED

rgb bitdist 7 100000 100 0.55347182 PASSED

rgb bitdist 8 100000 100 0.90526925 PASSED

rgb bitdist 9 100000 100 0.85459888 PASSED

rgb bitdist 10 100000 100 0.54343586 PASSED

rgb bitdist 11 100000 100 0.85955345 PASSED

rgb bitdist 12 100000 100 0.96073582 PASSED

rgb min dist 2 10000 1000 0.25687550 PASSED

rgb min dist 3 10000 1000 0.94105725 PASSED

rgb min dist 4 10000 1000 0.02655776 PASSED

rgb min dist 5 10000 1000 0.97958993 PASSED

rgb perm. 2 100000 100 0.99548110 WEAK

rgb perm. 3 100000 100 0.10918976 PASSED

rgb perm. 4 100000 100 0.30067013 PASSED

rgb perm. 5 100000 100 0.56355072 PASSED

rgb lagged sum 0 1000000 100 0.32977275 PASSED

rgb lagged sum 1 1000000 100 0.05176343 PASSED

rgb lagged sum 2 1000000 100 0.52586403 PASSED

rgb lagged sum 3 1000000 100 0.72181352 PASSED

rgb lagged sum 4 1000000 100 0.55689168 PASSED

rgb lagged sum 5 1000000 100 0.70416891 PASSED

rgb lagged sum 6 1000000 100 0.31310402 PASSED

rgb lagged sum 7 1000000 100 0.08921029 PASSED

rgb lagged sum 8 1000000 100 0.39772159 PASSED

rgb lagged sum 9 1000000 100 0.42865011 PASSED

rgb lagged sum 10 1000000 100 0.40793002 PASSED

rgb lagged sum 11 1000000 100 0.14196060 PASSED

rgb lagged sum 12 1000000 100 0.77073119 PASSED

rgb lagged sum 13 1000000 100 0.91291123 PASSED

rgb lagged sum 14 1000000 100 0.76361644 PASSED

rgb lagged sum 15 1000000 100 0.83418338 PASSED

rgb lagged sum 16 1000000 100 0.54128493 PASSED

rgb lagged sum 17 1000000 100 0.57651017 PASSED

rgb lagged sum 18 1000000 100 0.45630399 PASSED

rgb lagged sum 19 1000000 100 0.56757579 PASSED

rgb lagged sum 20 1000000 100 0.08996408 PASSED

rgb lagged sum 21 1000000 100 0.43218363 PASSED

rgb lagged sum 22 1000000 100 0.83088358 PASSED

rgb lagged sum 23 1000000 100 0.27826794 PASSED

rgb lagged sum 24 1000000 100 0.08133363 PASSED

rgb lagged sum 25 1000000 100 0.86286318 PASSED

rgb lagged sum 26 1000000 100 0.17775301 PASSED

rgb lagged sum 27 1000000 100 0.13708069 PASSED

rgb lagged sum 28 1000000 100 0.94299568 PASSED

rgb lagged sum 29 1000000 100 0.09042752 PASSED

rgb lagged sum 30 1000000 100 0.88517483 PASSED

rgb lagged sum 31 1000000 100 0.16946859 PASSED

rgb lagged sum 32 1000000 100 0.95616908 PASSED

rgb kstest test 0 10000 1000 0.56155741 PASSED

dab bytedistrib 0 51200000 1 0.61587529 PASSED

dab dct 256 50000 1 0.09733919 PASSED

dab filltree 32 15000000 1 0.93009017 PASSED

dab filltree 32 15000000 1 0.37324042 PASSED

dab filltree2 0 5000000 1 0.93042991 PASSED

dab filltree2 1 5000000 1 0.89077655 PASSED

dab monobit2 12 65000000 1 0.90143897 PASSED

7

[17] N. R. R. M. M. S. M. B. J. Z. L. G. P. O. Felix Zhan, Anthony Martinez,
“Beyond cumulative sum charting in non-stationarity detection and
estimation,” IEEE Access, 2019.

[18] Z. J. Schwob, M. and D. A., “Modeling cell communica-
tion with time-dependent signaling hypergraphs,” IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, p. doi:
10.1109/TCBB.2019.2937033, 2019.

[19] C. Chiu and J. Zhan, “Deep learning for link prediction in dynamic
networks using weak estimators,” IEEE Access, vol. 6, no. 1, pp. 35 937
– 35 945, 2018.

[20] M. Bhaduri and J. Zhan, “Using empirical recurrences rates ratio for time
series data similarity,” IEEE Access, vol. 6, no. 1, pp. 30 855–30 864,
2018.

[21] J. Wu, J. Zhan, and S. Chobe, “Mining association rules for low
frequency itemsets,” PLOS ONE, vol. 13, no. 7, 2018.

[22] P. Ezatpoor, J. Zhan, J. Wu, and C. Chiu, “Finding top-k dominance on
incomplete big data using mapreduce framework,” IEEE Access, vol. 6,
no. 1, pp. 7872–7887, 2018.

[23] P. Chopade and J. Zhan, “Towards a framework for community detection
in large networks using game-theoretic modeling,” IEEE Transactions
on Big Data, vol. 3, no. 3, pp. 276–288, 2017.

[24] M. Bhaduri, J. Zhan, and C. Chiu, “A weak estimator for dynamic
systems,” IEEE Transactions on Big Data, vol. 5, no. 1, pp. 27 354–
27 365, 2017.

[25] M. Pirouz and J. Zhan, “Toward efficient hub-less real time personalized
pagerank,” IEEE Transactions on Big Data, vol. 5, no. 1, pp. 26 364–
26 375, 2017.

[26] M. Bhaduri, J. Zhan, C. Chiu, and F. Zhan, “A novel online and non-
parametric approach for drift detection in big data,” IEEE Access, vol. 5,
no. 1, pp. 15 883–15 892, 2017.

[27] C. Chiu, J. Zhan, and F. Zhan, “Uncovering suspicious activity from
partially paired and incomplete multimodal data,” IEEE Access, vol. 5,
no. 1, pp. 13 689 – 13 698, 2017.

[28] R. Ahn and J. Zhan, “Using proxies for node immunization identification
on large graphs,” IEEE Access, vol. 5, no. 1, pp. 13 046–13 053, 2017.

[29] M. Wu, J. Zhan, and J. Lin, “Ant colony system sanitization approach to
hiding sensitive itemsets,” IEEE Access, vol. 5, no. 1, pp. 10 024–10 039,
2017.

[30] J. Zhan and B. Dahal, “Using deep learning for short text understanding,”
Journal of Big Data, vol. 4, no. 34, pp. 1–15, 2017.

[31] J. Zhan, S. Gurung, and S. P. K. Parsa, “Identification of top-k nodes
in large networks using katz centrality,” Journal of Big Data, vol. 4,
no. 16, 2017.

[32] J. Zhan, T. Rafalski, G. Stashkevich, and E. Verenich, “Vaccination
allocation in large dynamic networks,” Journal of Big Data, vol. 4, no. 2,
pp. 161–172, 2017.

[33] J. M.-T. Wu, J. Zhan, and J. C.-W. Lin, “An aco-based approach to mine
high-utility itemsets,” Knowledge-Based Systems, vol. 116, pp. 102–113,
2017.

[34] M. Pirouz, J. Zhan, and S. Tayeb, “An optimized approach for com-
munity detection and ranking,” Journal of Big Data, vol. 3, no. 22, pp.
102–113, 2017.

[35] J. Zhan, V. Gudibande, and S. P. K. Parsa, “Idenfication of top-k
influential communities in large networks,” Journal of Big Data, vol. 3,
no. 16, 2016.

[36] M. Pirouz and J. Zhan, “Node reduction in personalized page rank
estimation for large graphs,” Journal of Big Data, vol. 3, no. 12, 2016.

[37] H. Selim and J. Zhan, “Towards shortest path identification on large
networks,” Journal of Big Data, vol. 3, no. 10, 2016.

[38] X. Fang and J. Zhan, “Sentiment analysis using product review data,”
Journal of Big Data, vol. 2, no. 5, pp. 1–14, 2015.

[39] P. Chopade and J. Zhan, “Structural and functional analytics for com-
munity detection in large-scale complex networks,” Journal of Big Data,
vol. 2, no. 1, pp. 1–28, 2015.

[40] J. Zhan and X. Fang, “A computational framework for detecting mali-
cious actors in communities,” International Journal of Privacy, Security,
and Integrity, vol. 2, no. 1, pp. 1–20, 2014.

[41] A. Rajasekar, H. Kum, M. Cross, J. Crabtree, S. Sankaran, H. Lander,
T. Carsey, G. King, and J. Zhan, “The databridge,” Science Journal,
vol. 2, no. 1, pp. 1–14, 2013.

[42] J. Zhan, X. Fang, and N. Koceja, “A novel framework on data reduction,”
Science Journal, vol. 2, no. 1, pp. 15–23, 2013.

[43] A. Doyal and J. Zhan, “Towards ddos defense and traceback,” Inter-
national Journal of Privacy, Security, and Integrity, vol. 1, no. 4, pp.
299–311, 2013.

[44] J. Zhan and X. Fang, “Towards social network evolution,” Human
Journal, vol. 1, no. 1, pp. 218–233, 2012.

[45] J. Zhan, J. Oommen, and J. Crisostomo, “Anomaly detection in dynamic
systems using weak estimator,” ACM Transaction on Internet Technol-
ogy, vol. 11, no. 1, pp. 53–69, 2011.

[46] J. Zhan and X. Fang, “Social computing: The state of the art,” Interna-
tional Journal of Social Computing and Cyber-Physical Systems, vol. 1,
no. 1, pp. 1–12, 2011.

[47] N. Mead, M. S., and J. Zhan, “Integrating privacy requirements con-
siderations into a security requirements engineering method and tool,”
International Journal of Information Privacy, Security and Integrity,
vol. 1, no. 1, pp. 106–126, 2011.

[48] J. Zhan, “Granular computing in privacy-preserving data mining,” In-
ternational Journal of Granular Computing, Rough Sets and Intelligent
Systems, vol. 1, no. 3, pp. 272–288, 2010.

[49] J. Wang, J. Zhang, and J. Zhan, “Towards real-time performance of
data privacy protection,” International Journal of Granular Computing,
Rough Sets and Intelligent Systems, vol. 1, no. 4, pp. 329–342, 2010.

[50] J. Zhan, “Secure collaborative social networks,” IEEE Transaction on
Systems, Man, and Cybernetics, Part C, vol. 40, no. 6, pp. 682–689,
2010.

[51] J. Zhan, H. C., I. Wang, T. Hsu, C. Liau, and W. D., “Privacy-preserving
collaborative recommender systems,” IEEE Transaction on Systems,
Man, and Cybernetics, Part C, vol. 40, no. 4, pp. 472–476, 2010.

[52] H. Park, J. Hong, J. Park, J. Zhan, and D. Lee, “Attribute-based access
control using combined authentication technologies,” IEEE Transaction
on Mobile Computing, vol. 9, no. 6, pp. 824–837, 2010.

[53] I. Wang, C. Shen, J. Zhan, T. Hsu, C. Liau, and D. Wang, “Empirical
evaluations of secure scalar product,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C, vol. 39, no. 4, pp. 440–447, 2009.

[54] A. Inoue, T. Wong, and J. Zhan, “Applications of machine learning to
information security and privacy,” Journal of Japanese Society for Fuzzy
Theory and Intelligent Informatics, vol. 19, no. 3, pp. 222–232, 2009.

[55] J. Zhan, “Privacy-preserving collaborative data mining,” IEEE Compu-
tational Intelligence Magazine, vol. 3, no. 2, pp. 31–41, 2008.

[56] A. Bashir and J. Zhan, “Not always a blunt tool – legislation in
the context of privacy externalities,” Communications of the Chinese
Cryptology and Information Security Association, vol. 2, no. 1, pp. 36–
48, 2008.

[57] J. Zhan and V. Rajamani, “The economic aspects of privacy,” Inter-
national Journal of Security and Its Applications, vol. 2, no. 3, pp.
101–108, 2008.

[58] J. Zhan, “The economic aspects of privacy,” International Journal of
Security and Its Applications, vol. 2, no. 3, pp. 101–108, 2008.

[59] W. Zhang, P. Wang, K. Peace, J. Zhan, and Y. Zhang, “On truth,
uncertainty, and bipolar logic,” Journal of New Mathematics and Natural
Computing, vol. 4, no. 2, pp. 55–65, 2008.

[60] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit,
“Atomic snapshots of shared memory,” Journal of the ACM (JACM),
vol. 40, no. 4, pp. 873–890, 1993.

[61] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A statistical
test suite for random and pseudorandom number generators for crypto-
graphic applications,” Booz-Allen and Hamilton Inc McLean VA, Tech.
Rep., 2001.

[62] C. M. Grinstead and J. L. Snell, Introduction to probability. American
Mathematical Soc., 2012.

[63] K. Marton and A. Suciu, “On the interpretation of results from the nist
statistical test suite,” Science and Technology, vol. 18, no. 1, pp. 18–32,
2015.

[64] S. H. Kwok and E. Y. Lam, “Fpga-based high-speed true random number
generator for cryptographic applications,” in TENCON 2006-2006 IEEE
Region 10 Conference. IEEE, 2006, pp. 1–4.

[65] J. Genoff, “An extremely massive high-quality true-random binary
data stream generator,” in 2018 IEEE XXVII International Scientific
Conference Electronics-ET. IEEE, 2018, pp. 1–4.

[66] A. Cherkaoui, V. Fischer, L. Fesquet, and A. Aubert, “A very high
speed true random number generator with entropy assessment,” in
International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2013, pp. 179–196.

8

